An inverse eigenvalue problem for doubly periodic pseudo-Jacobi matrices
نویسندگان
چکیده
In this paper, we investigate a direct and an inverse eigenvalue problem to recover doubly periodic pseudo-Jacobi matrices from three spectra ?, ?1, ?2 two positive numbers ??, ??. Necessary sufficient conditions for the existence of solution are given numerical algorithms, using modified unsymmetric Lanczos scheme, reconstruct matrix prescribed data proposed. Some illustrative examples presented. The obtained results extend several existing in literature.
منابع مشابه
Some results on the symmetric doubly stochastic inverse eigenvalue problem
The symmetric doubly stochastic inverse eigenvalue problem (hereafter SDIEP) is to determine the necessary and sufficient conditions for an $n$-tuple $sigma=(1,lambda_{2},lambda_{3},ldots,lambda_{n})in mathbb{R}^{n}$ with $|lambda_{i}|leq 1,~i=1,2,ldots,n$, to be the spectrum of an $ntimes n$ symmetric doubly stochastic matrix $A$. If there exists an $ntimes n$ symmetric doubly stochastic ...
متن کاملOn the nonnegative inverse eigenvalue problem of traditional matrices
In this paper, at first for a given set of real or complex numbers $sigma$ with nonnegative summation, we introduce some special conditions that with them there is no nonnegative tridiagonal matrix in which $sigma$ is its spectrum. In continue we present some conditions for existence such nonnegative tridiagonal matrices.
متن کاملAn inverse eigenvalue problem for symmetrical tridiagonal matrices
We consider the following inverse eigenvalue problem: to construct a symmetrical tridiagonal matrix from the minimal and maximal eigenvalues of all its leading principal submatrices. We give a necessary and sufficient condition for the existence of such a matrix and for the existence of a nonnegative symmetrical tridiagonal matrix. Our results are constructive, in the sense that they generate a...
متن کاملon the nonnegative inverse eigenvalue problem of traditional matrices
in this paper, at rst for a given set of real or complex numbers with nonnegative summation, we introduce some special conditions that with them there is no nonnegative tridiagonal matrix in which is its spectrum. in continue we present some conditions for existence such nonnegative tridiagonal matrices.
متن کاملStability estimates for the Jacobi inverse eigenvalue problem
We present different stability estimates for the Jacobi inverse eigenvalue problem. First, we give upper bounds expressed in terms of quadrature data and not having weights in denominators. The technique of orthonormal polynomials and integral representation of Hankel determinants is used. Our bounds exhibit only polynomial growth in the problem’s dimension (see [4]). It has been shown that the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2022
ISSN: ['0377-0427', '1879-1778', '0771-050X']
DOI: https://doi.org/10.1016/j.cam.2021.113957